

Journal of Organometallic Chemistry 518 (1996) 203-211

Reactions of $HRuCo_3(CO)_9[HC(PPh_2)_3]$ and $H_3Ru_3Co(CO)_9[HC(PPh_2)_3]$ with PMe_2Ph . Crystal structures of clusters $HRuCo_3(CO)_8[HC(PPh_2)_3](PMe_2Ph)$ and $H_3Ru_3Co(CO)_9[HC(PPh_2)_3](PMe_2Ph) \cdot CH_2Cl_2$

Heikki J. Kakkonen *, Markku Ahlgrèn, Tapani A. Pakkanen, Jouni Pursiainen ¹

Department of Chemistry, University of Joensuu, PO Box 111, SF-80101 Joensuu, Finland

Received 20 December 1995

Abstract

The reaction of the clusters $HRuCo_3(CO)_9[HC(PPh_2)_3]$ and $H_3Ru_3Co(CO)_9[HC(PPh_2)_3]$ with the phosphine ligand PMe_2Ph produces two tetranuclear phosphine-substituted Ru-Co mixed metal clusters. In $HRuCo_3(CO)_8[HC(PPh_2)_3](PMe_2Ph)$ the $HC(PPh_2)_3$ ligand caps the Co₃ face and the monodentate PMe_2Ph ligand is coordinated with the Ru atom by replacing one apical carbonyl ligand. In the compound $H_3Ru_3Co(CO)_9[HC(PPh_2)_3]$ (PMe_2Ph) the tridentate $HC(PPh_2)_3$ is disconnected from the Ru₂Co face and chelates to the Ru atom through two phosphorus atoms while the third phosphorus of the $HC(PPh_2)_3$ ligand remains uncoordinated. This leaves one coordination site vacant and the PMe_2Ph ligand is coordinated without changes in the amount of carbonyl ligands.

Keywords: Ruthenium; Cobalt; Carbonyl; Phosphine; Cluster; Crystal structure

1. Introduction

Phosphine derivatives have been prepared for most of the tetranuclear $H_x M_x M'_{4-x}(CO)_{12}$ (x = 0 to 4, M =Ru; M' = Co or Rh) clusters and the structures of the derivatives have been studied [1]. In many cases the replacement site of the carbonyl ligands depends on the composition of the metal framework and the nature of the phosphine ligand.

In clusters containing the basal Co_3 face, like $Co_4(CO)_{12}$ and $HRuCo_3(CO)_{12}$, the replacement of the carbonyl ligands occurs mainly at the axial sites of the basal Co_3 face, although the preference of coordination between cobalt and ruthenium in $HRuCo_3(CO)_{12}$ is not clear. For example, the coordination of the PMe_2Ph ligand has been found to involve both the Co and Ru atoms in $HRuCo_3(CO)_{12}$ [2]. In some clusters containing Rh also equatorial coordination of the phosphine ligand is found.

It is possible to shield the basal face with a large fragment, and thus permit the phosphine ligand to coordinate with the Ru atom. One example of this is the cluster $Ph_3PAuRuCo_3(CO)_{11}(PMe_2Ph)$, which is produced in a reaction between $HRuCo_3(CO)_{11}(PMe_2Ph)$ and $AuPPh_3Cl$. In this derivative the gold phosphine unit occupies the basal face and the PMe_2Ph ligand moves from its original axial coordination site on the basal Co_3 face to the apical Ru atom [3]. However, in $Ph_3PAuFeCo_3(CO)_{11}(PMe_2Ph)$, where the AuPPh_3 fragment covers the basal Co_3 face, the PMe_2Ph ligand is also coordinated on the basal face in an axial position [4].

In phosphine derivatives of $HRuCo_3(CO)_{12}$ the hydride ligand usually bridges the basal Co₃ face. Derivatives in which the hydride ligand bridges an Ru–Co edge are not so common; $HRuCo_3(CO)_9(trithiane)$ and $HRuCo_3(CO)_9[HC(PPh_2)_3]$ are examples which have been found earlier [5,6].

The tridentate $HC(PPh_2)_3$ ligand coordinates with the $H_x M_x M'_{4-x}(CO)_{12}$ (x = 0 to 4, M = Ru; M' = Coor Rh) clusters forming derivatives such as $Co_4(CO)_9$ [$HC(PPh_2)_3$], $Rh_4(CO)_9$ [$HC(PPh_2)_3$], $H_4Ru_4(CO)_9$ [HC-

^{*} Corresponding author.

¹ Present address: Department of Chemistry, University of Oulu, Linnanmaa, SF-90570 Oulu, Finland.

⁰⁰²²⁻³²⁸X/96/\$15.00 © 1996 Elsevier Science S.A. All rights reserved *PII* S0022-328X(96)06155-4

 $(PPh_2)_3$], HRuCo₃(CO)₉[HC(PPh_2)₃] and H₃Ru₃Co (CO)₉[HC(PPh₂)₃] · 0.5 C₆H₁₄, where the tridentate phosphine ligand is coordinated on a triangular M₃ face [6–10]. The tridentate ligand, when it coordinates with the three different metal centers, binds the metal centers together. This is one possible way of stabilizing the metal framework towards decomposition under catalytic reaction conditions.

In phosphine-substituted molecules the phosphine ligand adds electron density to the metal atoms and some of this electron density is passed on to the carbonyl groups. Thus further substitution requires stronger reaction conditions, which increases the possibility of the decomposition of the cluster molecule. Further replacement of the carbonyl ligands from the $HC(PPh_2)_3$ derivatives has been studied for the Co₄(CO)₉[HC- $(PPh_2)_3$] cluster. In the reaction products the attached phosphine ligand prefers the apical coordination site if only one monodentate phosphine ligand is added. With two phosphine units coordination is also found in both the apical and an equatorial position. Bridging coordination between the apical and equatorial positions is also possible when the added phosphine ligand is bidentate. Examples of these are the clusters $Co_4(CO)_{8}$ - $[HC(PPh_2)_3](PMe_3), Co_4(CO)_7[HC(PPh_2)_3][(PMe_3)_2]$ and $\text{Co}_4(\text{CO})_7[\text{HC}(\text{PPh}_2)_3]$ (dppm) (dppm = Ph₂PCH₂ PPh₂) [11,12].

2. Results and discussion

When the mixed metal cluster derivatives $HRuCo_3(CO)_9[HC(PPh_2)_3]$ and $H_3Ru_3Co(CO)_9[HC(PPh_2)_3]$ are reacted with PMe_2Ph , two novel cluster derivatives are produced.

The crystal structures of compounds 1 and 2 are shown in Figs. 1 and 2. The atomic coordinates, se-

Fig. 1. Structure of $HRuCo_3(CO)_8[HC(PPh_2)_3]$ (PMe₂Ph) (1).

Fig. 2. Structure of $H_3Ru_3Co(CO)_9[HC(PPh_2)_3](PMe_2Ph)$ (2).

lected bond lengths and angles and crystallographic data are listed in Tables 1–5.

In $HRuCo_3(CO)_8[HC(PPh_2)_3](PMe_2Ph)$ (1) (Fig. 1) the Ru atom is located on the apical position and the basal face is formed by the Co₃ triangle, where the axial sites are occupied by the $HC(PPh_2)_3$ ligand. Three carbonyl ligands bridge the basal edges and the rest of the carbonyls remain terminal. The PMe₂Ph ligand is coordinated with the apical Ru atom. The hydride ligand was located on the difference electron density map and bridges an Ru-Co edge, as in the original cluster. A more common coordination site for the hydride ligand in the phosphine derivatives of $HRuCo_3(CO)_{12}$ is the basal Co_3 face. As in the original cluster, in 1 the large phosphine ligand shields the basal face and the hydride ligand therefore coordinates with an Ru-Co edge and the phosphine ligand with an apical site. The site of the hydride ligand can also be deduced on the basis of the bond lengths and angles. The hydride-bridged Ru-Co (1) bond is longer than the two other Ru–Co bonds, the Ru(1)-Co(1), Ru(1)-Co(2) and Ru(1)-Co(3) bond lengths are 2.760(1), 2.658(1) and 2.656(1) Å in molecule A and 2.750(1), 2.631(1) and 2.691(1) Å in molecule B respectively. The hydride ligand also repulses the carbonyl ligand CO(4); the Ru(1)-Co(1)-C(4) bond angle is 116.1(3)° in molecule A and 112.4(3)° in molecule **B**, and the Ru(1)-Co(2)-C(6) and Ru(1)-Co(3)-C(8) angles on the non-bridged edges are 96.8(4) and 98.2(3)° in molecule A and 95.6(3) and 103.5(3)° in molecule B respectively. In the original cluster $HRuCo_3(CO)_0[HC(PPh_2)_3]$ the corresponding bond lengths were 2.740(1), 2.646(2) and 2.654(2) Å and the corresponding angles were 118.3(3)° in the hydridebridged edge and 96.9(3) and 100.5(3)° in the nonbridged edges.

The ¹H NMR spectrum of 1 shows the doublet of doublets signal at -19.9 ppm. A similar signal at -19.9 ppm was observed in the compound produced in the reaction between HRuCo₃(CO)₉[HC(PPh₂)₃] and PMe₃. According to the ¹H NMR and IR spectra,

Table 1 Atomic co coefficients

Atom $\overline{Ru(1)}$ Co(1) Co(2) $C_{0}(3)$ **P(1)** P(2) P(3) P(4) O(1) O(3) O(4) O(6) O(8) O(12) O(13) O(23) C(1) C(3) C(4) C(6) C(8) C(10) C(12) C(13) C(23) C(40) C(41) C(111) C(112) C(113) C(114) C(115) C(110) C(121) C(122) C(123) C(124) C(125) C(120) C(211) C(212) C(213) C(214) C(215) C(210) C(221) C(222) C(223) C(224) C(225) C(220) C(311) C(312) C(313) C(314) C(315) C(310) C(321) C(322) C(323) C(324) C(325)

				Table I (c	ontinued)			
ordinates (×) $(Å^2 \times 10^3)$ for	10^4) and equi	valent isotropic	(PMe ₂ Ph) (1)	Atom	x	у	<i>z</i>	U _{eq}
				C(320)	1485	3690	1297	33(3)
<u>x</u>	<u>y</u>	2		C(411)	2550(3)	- 78(3)	289(2)	74(5)
2934(1)	1463(1)	1105(1)	32(1)	C(412)	2107	- 575	101	103(7)
1559(1)	1351(1)	1095(1)	30(1)	C(413)	1538	- 501	- 431	101(7)
2448(1)	195/(1)	18/8(1) 842(1)	$\frac{32(1)}{20(1)}$	C(414)	1410	- 31	- 780 - 598	77(5)
$\frac{1972(1)}{613(1)}$	2355(1) 1769(1)	1105(1)	29(1)	C(410)	2422	44.5	- 61	46(4)
1678(1)	2418(1)	2204(1)	32(1)	H(1)	2748	896	1088	80
1175(1)	2944(1)	986(1)	29(1)	$R_{1}(1')$	8313(1)	3877(1)	2089(1)	35(1)
2992(1)	1069(1)	237(1)	43(1)	$C_0(1')$	7133(1)	3544(1)	1142(1)	33(1)
4231(3)	2167(3)	1136(3)	73(3)	Co(2')	7569(1)	2899(1)	2037(1)	34(1)
3837(4)	498(3)	1888(3)	92(4)	Co(3')	6961(1)	3869(1)	2065(1)	33(1)
920(4)	179(3)	756(3)	80(4)	P(1')	6119(1)	3033(1)	779(1)	31(1)
3751(4)	1825(4)	2887(3)	89(4)	P(2')	6611(1)	2333(1)	1898(1)	32(1)
2475(4)	2985(3)	46(3)	71(3)	P(3')	5860(1)	3507(1)	1834(1)	32(1)
2273(3)	737(3)	2213(3)	60(3)	P(4')	8629(1)	4860(1)	1990(1)	45(1)
1190(3)	1600(3)	-165(2)	44(2)	O(1')	9157(5)	3967(4)	3398(3)	124(5)
3229(3)	2962(3)	1631(2)	44(2)	O(3')	9571(4)	3377(3)	1845(4)	95(4)
3719(5)	1914(4)	1144(3)	44(4)	O(4')	/236(5)	3959(3)	52(3)	97(4)
3490(5)	849(4) 641(4)	1585(4)	53(4)	O(0')	8773(4)	2225(4)	2790(3)	93(4)
1149(4)	041(4)	882(4) 2482(4)	44(4)	O(8)	0933(4) 8005(3)	4800(4)	2000(3)	55(2)
3232(3) 3264(4)	139.3(4) 2724(4)	350(3)	49(4)	O(12)	6628(3)	4778(3)	1147(3)	48(3)
854(4)	2724(4) 2544(3)	1527(3)	26(3)	O(23')	7728(3)	3320(3)	3712(2)	50(3)
2172(4)	1163(4)	1932(3)	40(3)	C(1')	8830(5)	3924(5)	2907(4)	65(4)
1443(4)	1757(3)	323(3)	34(3)	C(3')	9103(5)	3580(5)	1932(4)	56(4)
2782(4)	2586(4)	1522(3)	40(3)	C(4')	7182(5)	3773(4)	482(4)	61(5)
3874(5)	775(5)	325(4)	72(5)	C(6')	8292(5)	2475(4)	2489(4)	49(4)
2835(6)	1571(4)	- 373(4)	70(5)	C(8')	6953(5)	4437(5)	2544(4)	55(4)
520(2)	844(2)	1939(2)	48(4)	C(10')	5843(4)	2794(3)	1411(3)	31(3)
199	514	2261	64(5)	C(12')	7767(4)	2816(4)	1346(3)	40(3)
- 455	697	2285	65(5)	C(13')	6791(4)	4314(4)	1369(3)	39(3)
- 787	1210	1988	55(4)	C(23')	7527(4)	3351(4)	2696(4)	39(3)
- 405	1340	1000	4/(4)	C(40')	9505(5)	5048(5)	2512(4)	12(5) 61(4)
-253(2)	1337	48(2)	36(3)	C(41)	6580(3)	3443(4)	2124(4) 22(3)	50(4)
- 859	1514	- 463	52(4)	C(132)	6549	1932	- 385	74(5)
-1389	1934	- 505	57(4)	C(132)	6064	1465	- 465	83(6)
-1312	2319	- 38	50(4)	C(134)	5620	1445	-138	67(5)
- 705	2284	473	40(3)	C(135)	5659	1893	269	45(3)
- 176	1864	516	33(3)	C(130)	6144	2360	349	37(3)
2585(3)	3389(3)	2656(2)	49(4)	C(141)	5344(3)	3991(2)	80(2)	50(4)
2810	3916	2971	54(4)	C(142)	4756	4248	- 354	65(5)
2382	4190	3239	60(4)	C(143)	4151	3906	-645	75(5)
1729	3936	3192	61(5)	C(144)	4134	3306	- 502	84(5)
1504	3409	2877	53(4) 36(3)	C(145)	4/22	3048	- 69	67(4)
1932	1694(3)	2009 3168(2)	36(3) 46(4)	C(140)	6081(2)	2062(2)	$\frac{222}{3077(2)}$	42(3)
1725(2)	1449	3647	64(4)	C(231)	6874	1862	3581	42(3) 57(4)
1141	1540	3712	63(4)	C(232)	6188	1717	3556	58(4)
611	1876	3297	52(4)	C(234)	5609	1772	3029	49(4)
737	2121	2818	42(3)	C(235)	5715	1972	2526	43(3)
1393	2029	2753	37(3)	C(230)	6402	2118	2550	36(3)
336(2)	2981(2)	- 202(2)	38(3)	C(241)	7124(2)	1392(3)	1419(2)	51(4)
- 221	3177	- 702	49(4)	C(242)	7118	822	1189	65(5)
- 726	3576	648	59(4)	C(243)	6530	450	1095	69(5)
- 676	3780	- 95	56(4)	C(244)	5949	647	1231	59(4)
-120	3584	405	43(3)	C(245)	5955	1217	1462	47(4)
580 2055(2)	5185 2025(2)	352 1174(0)	52(3)	C(240)	6542	1589	1556	37(3)
2000(<i>3)</i> 2280	3733(2) 4515	1353	41(3) 57(4)	C(331)	5175(3) 4502	43/8(2)	14/8(2)	48(4)
1935	4849	1654	63(5)	C(332)	4393	4733 4770	1212 841	25(3) 68(5)
1366	4604	1777	51(4)	C(334)	3873	4108	737	61(4)
1141	4024	1599	43(3)	C(335)	4452	3731	1004	46(4)

Table 2

Table 1 (continued)

Atom	x	у	z	U _{eq}
C(330)	5102	3966	1374	36(3)
C(341)	6013(2)	3407(3)	3017(2)	56(4)
C(342)	5772	3336	3483	69(5)
C(343)	5051	3221	3371	58(4)
C(344)	4571	3176	2793	56(4)
C(345)	4812	3247	2327	44(3)
C(340)	5533	3363	2439	33(3)
C(421)	9382(3)	5029(3)	1233(3)	73(5)
C(422)	9456	5188	705	71(5)
C(423)	8861	5377	231	67(5)
C(424)	8193	5406	285	76(5)
C(425)	8119	5247	813	69(5)
C(420)	8713	5058	1287	47(4)
H(1')	7793	4037	1270	80

Equivalent isotropic U defined as one third of the trace of the orthogonalized U_{ij} tensor.

 $HRuCo_3(CO)_8[HC(PPh_2)_3](PMe_3)$ corresponds to compound 1.

In $H_3Ru_3Co(CO)_0[HC(PPh_2)_3](PMe_2Ph)$ (2) (Fig. 2) the tridentate HC(PPh₂)₃ ligand is disconnected from an Ru₂Co face of the tetrahedral Ru₃Co framework and coordinates with a ruthenium atom through two phosphorus atoms in a bidentate way. One phosphorus atom of the $HC(PPh_2)_3$ ligand remains uncoordinated. The PMe₂Ph ligand is coordinated with an Ru atom without replacing the carbonyl ligand and the number of carbonyl ligands remains unchanged when compared with the original cluster. However, the arrangement of the ligands changes. Of the nine carbonyl ligands, seven are terminal and two carbonyl ligands semibridge the Co(1)-Ru(1) and Co(1)-Ru(3) edges. Bond lengths Co(1)-C(4), Ru(1)-C(4), Co(1)-C(13) and Ru(3)-C(13) are 1.71(3), 2.34(3), 1.80(2) and 2.14(2) Å in molecule A and 1.77(2), 2.33(3), 1.82(2) and 2.17(3) Å in molecule B respectively. Co(1) remains electron deficient, which explains the semibridging carbonyl ligands CO(4) and CO(13). Corresponding semibridges are also found in $H_3Ru_3Co(CO)_{10}$ (dppe), where the structure resembles the structure of 2 [13]. In $H_3Ru_3Co(CO)_{10}$ (dppe) a bidentate Ph₂PCH₂CH₂PPh₂ (dppe) ligand is found in a location similar to that of the $HC(PPh_2)_3$ ligand in 2. In 2 one more carbonyl ligand is replaced by the PMe₂Ph ligand. The structure of the cluster $H_3Ru_3Co(CO)_9(HC(PPh_2)_3)$, which was used as a starting material in the synthesis of 2, corresponds to the structure of the C1 isomer of the parent cluster $H_3Ru_3Co(CO)_{12}$. In both structures one carbonyl ligand semibridges an Ru-Co edge and one hydride ligand is located on an Ru-Co edge when the remaining two hydride ligands bridge the Ru-Ru edges [6,14].

Though the direct location of the hydride ligands on a difference electron density map was not successful, the hydride positions can be inferred from the structural parameters. The Ru(1)-Ru(3)-C(8), Ru(1)-Ru(3)-

CH_2Cl_2	(2)			
Atom	x	у	z	U _{eq}
$\overline{Ru(1)}$	3226(1)	5733(1)	917(1)	60(1)
Ru(2)	2146(1)	6291(1)	1529(1)	42(1)
Ru(3)	2720(1)	6819(1)	567(1)	53(1)
Co(1)	3443(2)	6713(1)	1424(1)	51(1)
P(1)	1452(3)	6850(2)	2019(2)	44(2)
P(2)	2018(3)	6634(3)	3125(2)	55(2)
P(3)	1868(3)	5772(2)	2234(2)	44(2)
P(4)	2596(3)	7806(3)	469(2)	63(2)
O(1)	2184(11)	5307(10)	158(9)	134(10)
O(2)	4375(11)	5709(10)	127(8)	125(8)
O(3)	3645(14)	4581(10)	1383(10)	165(11)
O(4)	4517(9)	5942(8)	1641(7)	90(6)
O(5)	4090(10)	/563(9)	2046(7)	106(7)
O(0)	935(9)	5/82(8)	978(6)	/9(5)
O(8)	3373(11) 1222(10)	6545(0)	= 477(7)	130(8)
O(12)	1325(10)	7208(8)	628(6)	80(6)
C(1)	4210(9) 2596(17)	5400(13)	433(11)	89(0) 95(10)
C(2)	3976(16)	5741(11)	422(10)	83(9)
C(3)	3518(17)	5024(13)	1220(10)	100(11)
C(4)	3984(14)	6148(11)	1492(10)	78(8)
C(5)	3818(16)	7213(14)	1807(10)	89(9)
C(6)	1405(11)	5991(10)	1180(8)	52(6)
C(8)	3117(15)	6733(12)	-80(10)	90(9)
C(9)	1865(14)	6648(11)	294(8)	75(8)
C(10)	1468(10)	6370(7)	2578(6)	38(5)
C(13)	3716(12)	7021(11)	832(8)	60(7)
C(40)	2987(13)	8241(10)	968(9)	86(9)
C(41)	3023(15)	8055(13)	-9/(10)	123(12)
C(112)	2545(8)	8268(8)	2239(0)	70(8)
C(112)	2053(12)	8673(5)	2587(0)	93(11)
C(114)	1371(11)	8530(7)	2487(6)	95(11)
C(115)	1177(7)	7983(8)	2338(6)	69(7)
C(110)	1664(9)	7579(5)	2214(5)	51(6)
C(121)	501(8)	7133(7)	1307(6)	79(8)
C(122)	-145(10)	7190(7)	1103(5)	102(10)
C(123)	- 703(7)	7023(8)	1385(8)	88(9)
C(124)	-615(7)	6799(7)	1870(7)	83(8)
C(125)	32(10)	6742(6)	2073(5)	70(7)
C(120)	590(7) 1222(8)	0909(0) 5883(8)	1792(0)	48(0)
C(211)	1222(8)	5501(8)	4117(7)	$\frac{91(10)}{121(13)}$
C(212) C(213)	1689(12)	5332(7)	4409(5)	125(14)
C(214)	2328(10)	5546(8)	4303(6)	86(10)
C(215)	2414(7)	5928(7)	3904(6)	80(8)
C(210)	1861(9)	6097(6)	3612(5)	55(6)
C(221)	868(9)	7266(6)	3448(5)	77(8)
C(222)	577(7)	7739(8)	3680(6)	85(9)
C(223)	984(10)	8180(6)	3861(5)	83(9)
C(224)	1681(10)	8149(6)	3809(5)	63(7)
C(225)	1972(7)	7676(8)	3576(6)	64(7)
C(220)	1565(10)	1234(0)	3390(5)	52(6) 87(0)
C(312)	202(10) 202(7)	31/4(/) 4716(0)	2339(0) 7750(7)	0/(9)
C(312)	406(10)	4280(7)	1935(8)	105(11)
C(315)	1039(11)	4302(6)	1712(6)	82(9)
C(314)	1469(7)	4760(7)	1812(6)	61(7)
C(310)	1264(8)	5196(5)	2135(6)	49(6)
C(321)	2303(8)	4980(6)	2941(6)	68(8)
C(322)	2770(11)	4711(6)	3258(5)	95(10)

Atomic coordinates (×10⁴) and equivalent isotropic displacement parameters ($\mathring{A}^2 \times 10^3$) for H₁Ru₃Co(CO)₉[HC(PPh₂)₃] (PMe₂Ph).

Table 2 (continued)

14010 2 (00	intiliaca)			
Atom	x	у	z	$U_{\rm eq}$
C(323)	3442(10)	4884(8)	3257(6)	102(11)
C(324)	3646(7)	5326(9)	2940(7)	100(10)
C(325)	3179(9)	5595(6)	2624(6)	77(8)
C(320)	2507(8)	5422(6)	2624(5)	56(7)
C(411)	1436(11)	8396(8)	804(5)	101(10)
C(412)	786(12)	8610(8)	739(9)	137(14)
C(413)	437(8)	8513(10)	287(11)	125(13)
C(414)	738(11)	8201(10)	- 99(8)	117(12)
C(415)	1388(11)	7986(8)	-34(5)	102(11)
C(410)	1737(7)	8083(7)	417(7)	57(6)
Ru(1')	1699(1)	4464(1)	6136(1)	53(1)
Ru(2')	2830(1)	3834(1)	6645(1)	44(1)
Ru(3')	2208(1)	3461(1)	5638(1)	51(1)
Co(1')	1538(2)	3407(1)	6514(1)	49(1)
P(1')	3561(3)	3222(2)	7051(2)	45(2)
P(2')	3009(3)	3271(3)	8172(2)	56(2)
P(3')	3148(3)	4247(2)	7401(2)	49(2)
P(4')	2377(3)	2499(3)	5436(2)	57(2)
O(1')	2706(11)	5121(9)	5513(8)	114(7)
O(2')	535(10)	4568(9)	5340(7)	108(8)
O(3')	1172(12)	5437(8)	6783(8)	119(8)
O(4')	423(10)	4090(8)	6826(7)	92(6)
O(5')	902(9)	2471(9)	7028(7)	92(6)
O(6')	3978(8)	4428(7)	6097(6)	76(5)
O(8')	1464(11)	3712(9)	4670(6)	116(7)
O(9′)	3453(11)	3882(9)	5104(6)	113(7)
O(13')	725(8)	3016(8)	5676(6)	84(6)
C(1')	2292(15)	4844(13)	5746(9)	85(9)
C(2')	977(14)	4518(10)	5632(10)	70(8)
C(3')	1369(15)	5072(13)	6555(11)	86(9)
C(4')	951(14)	3959(10)	6645(8)	60(7)
C(5')	1203(13)	2855(12)	6842(9)	68(8)
C(6')	3558(12)	4182(8)	6297(8)	50(6)
C(8')	1732(12)	3611(11)	5046(9)	71(8)
C(9')	2991(15)	3729(12)	5352(8)	87(9)
C(10')	3551(11)	3607(7)	7689(6)	43(6)
C(13')	1220(13)	3188(10)	5894(8)	63(7)
C(40')	1982(12)	1989(9)	5867(9)	77(8)
C(41')	2002(14)	2311(10)	4826(8)	85(9)
C(131)	3867(7)	2045(9)	7170(5)	71(8)
C(132)	3690(11)	1472(7)	7222(6)	99(10)
C(133)	3013(13)	1318(6)	7260(6)	85(9)
C(134)	2514(8)	1737(9)	7245(6)	79(8)
C(135)	2692(8)	2309(7)	7193(5)	66(7)
C(130)	3368(10)	2463(6)	7155(5)	51(6)
C(141)	5006(9)	3299(6)	/124(5)	70(7)
C(142)	5644(7)	3255(7)	6909(8)	79(8)
C(143)	5708(8)	3113(8)	6399(8)	119(12)
C(144)	5134(11)	301/(8)	6104(5)	(11)
C(143)	449/(9)	3001(7)	6929(6)	54(6)
C(140)	4433(0)	3203(7) 3971(6)	0020(0)	75(8)
C(231)	2037(8)	3871(0)	9016(7)	73(8)
C(232)	2723(10) 2266(12)	4179(7) 4251(7)	9400(0)	108(11)
C(233)	3300(12)	4331(7)	9010(3)	100(11)
C(234)	3837(8)	3006(7)	8876(6)	84(8)
C(233)	3194(10)	3735(6)	8723(4)	55(6)
C(230)	A150(10)	2574(7)	8402(5)	60(7)
C(241) C(2A2)	4455(8)	2019(0)	8613(6)	93(0)
C(242)	4052(12)	1649(6)	8796(6)	83(9)
C(243)	3353(12)	1694(6)	8768(5)	92(10)
C(245)	3056(8)	2179(8)	8558(6)	75(8)
C(240)	3459(10)	2619(6)	8375(5)	54(6)
C(331)	4416(9)	4826(7)	7594(6)	94(10)
		.020(7)		27(10)

Table 2	(continued)	
Atom	r	

Atom	x	у	Ζ.	$U_{ m eq}$
C(332)	4845(7)	5290(9)	7528(7)	107(11)
2(333)	4648(10)	5743(7)	7218(8)	118(12)
C(334)	4022(11)	5731(6)	6975(6)	96(10)
C(335)	3594(8)	5266(8)	7041(6)	71(8)
C(330)	3791(8)	4813(6)	7351(6)	65(7)
C(341)	2727(8)	4967(7)	8194(6)	74(8)
C(342)	2254(12)	5202(6)	8521(5)	89(11)
C(343)	1581(10)	5034(8)	8490(6)	105(13)
C(344)	1381(7)	4630(9)	8131(8)	109(12)
C(345)	1854(10)	4395(7)	7803(6)	78(8)
C(340)	2527(9)	4564(6)	7835(5)	51(6)
C(421)	3507(11)	1868(8)	5744(6)	114(12)
C(422)	4167(12)	1671(7)	5696(8)	111(11)
C(423)	4557(7)	1845(10)	5287(10)	106(11)
C(424)	4287(10)	2215(10)	4926(7)	119(12)
C(425)	3627(11)	2411(7)	4973(6)	88(9)
C(420)	3237(7)	2237(8)	5382(7)	59(7)
^a Cl(51)	4375(12)	9312(10)	3810(9)	179(6)
^a Cl(52)	3710(13)	8480(10)	3283(9)	179(6)
^a C(50)	4427(26)	8621(22)	3536(28)	179(6)
^a Cl(61)	604(13)	4313(11)	3591(9)	186(7)
^a Cl(62)	1409(13)	3429(11)	3249(9)	186(7)
^a C(60)	600(24)	3642(23)	3300(29)	186(7)
^a Cl(71)	4229(14)	5467(12)	4508(10)	202(7)
^a Cl(72)	4567(14)	5943(12)	5373(10)	202(7)
^a C(70)	4845(30)	5834(34)	4805(19)	202(7)
^a Cl(81)	800(14)	672(12)	4597(10)	205(9)
^a Cl(82)	416(31)	1463(25)	5237(20)	205(9)
^a Cl(83)	397(30)	695(24)	5491(21)	205(9)
^a C(80)	345(95)	742(34)	5138(48)	205(9)
^a C(80′)	387(105)	1143(45)	4996(34)	205(9)

C(9), Ru(3)-Ru(1)-C(2) and Ru(3)-Ru(1)-C(1) bond angles, which are 92.8(9), 104.3(8), 92.4(8) and 79.7(9)° (av. 92.3°) in molecule A and 93.0(8), 102.1(9), 90.0(7) and $84.8(9)^{\circ}$ (av. 92.5°) in molecule **B** respectively approach the values (av. 92.3°) found in the structure of $H_3Ru_3Co(CO)_{10}$ (dppe), where this bond was not hydride-bridged. The small values of these Ru-Ru-C angles in 2 thus exclude the possibility of an edgebridging hydride ligand on the Ru(1)-Ru(3) edge. This leaves three M-M edges free for the three existing hydride ligands: the edges Co(1)-Ru(2), Ru(1)-Ru(2)and Ru(2)-Ru(3). These bonds are also longer than the other bonds because the hydride ligand lengthens the metal-metal bond. The bond lengths of the Co(1)-Ru(2), Ru(1)-Ru(2) and Ru(2)-Ru(3) edges are 2.766(4), 2.987(3) and 3.044(2) Å in molecule A and 2.764(3), 2.989(2) and 3.043(2) Å in molecule B respectively. The bond lengths Ru(1)-Ru(3), Co(1)-Ru(3)and Co(1)-Ru(1) are shorter, 2.876(3), 2.674(3) and 2.684(4) Å in molecule A and 2.871(3), 2.672(3) and 2.683(4) Å in molecule **B** respectively.

Hydride ligands also require space and therefore the ligands adjacent to the hydride-bridged edges are re-

Table 3 Selected geometric parameters (Å, °) for $HRuCo_3(CO)_8[HC(PPh_2)_3]$ (PMe₂Ph) (1)

Ru(1)-Co(1)	2.760(1)	Ru(1')-Co(1')	2.750(1)
Ru(1)-Co(2)	2.658(1)	Ru(1')-Co(2')	2.631(1)
Ru(1)-Co(3)	2.656(1)	Ru(1')-Co(3')	2.691(1)
Ru(1)-P(4)	2.337(3)	Ru(1') - P(4')	2.331(3)
Ru(1)-C(1)	1.845(9)	Ru(1')-C(1')	1.893(9)
Ru(1) - C(3)	1.887(9)	Ru(1')-C(3')	1.883(11)
Co(1)-Co(2)	2.496(1)	Co(1')-Co(2')	2.501(2)
Co(1)-Co(3)	2.508(2)	Co(1') - Co(3')	2.506(2)
Co(1) - P(1)	2.209(2)	Co(1') - P(1')	2.221(2)
Co(1)-C(4)	1.782(9)	Co(1')-C(4')	1.729(12)
Co(1)-C(12)	2.013(7)	Co(1')-C(12')	2.020(8)
Co(1)-C(13)	2.028(9)	Co(1')-C(13')	2.009(9)
Co(2)-Co(3)	2.505(1)	Co(2')-Co(3')	2.509(2)
Co(2) - P(2)	2.229(3)	Co(2') - P(2')	2.226(2)
Co(2) - C(6)	1.733(7)	Co(2')-C(6')	1.754(8)
Co(2) - C(12)	1.883(9)	Co(2')-C(12')	1.875(10)
Co(2) - C(23)	1.903(9)	Co(2')-C(23')	1.928(9)
Co(3) - P(3)	2,229(2)	Co(3') - P(3')	2.227(2)
Co(3) - C(8)	1.749(9)	Co(3') - C(8')	1.733(10)
Co(3) - C(13)	1.853(7)	Co(3') - C(13')	1.892(9)
Co(3)-C(23)	1.941(7)	Co(3') - C(23')	1.938(8)
P(1) - C(10)	1.905(7)	P(1') - C(10')	1.894(9)
P(2) - C(10)	1.891(6)	P(2')-C(10')	1.881(7)
P(3) - C(10)	1.890(8)	P(3') - C(10')	1.898(8)
P(4) - C(40)	1.826(10	P(4') - C(40')	1.810(8)
P(4) - C(41)	1.802(10	P(4') - C(41')	1.833(10)
$C_{0}(1) - R_{1}(1) - C_{0}(2)$	54.8(1)	Co(1')-Ru(1')-Co(2')	55.3(1)
$C_{0}(1)-R_{u}(1)-C_{0}(3)$	55.1(1)	Co(1')-Ru(1')-Co(3')	54.8(1)
Co(2) - Ru(1) - Co(3)	56.3(1)	Co(2')-Ru(1')-Co(3')	56.2(1)
Co(1) - Ru(1) - P(4)	109.4(1)	Co(1')-Ru(1')-P(4')	110.8(1)
Co(2) - Ru(1) - P(4)	162.2(1)	Co(2')-Ru(1')-P(4')	162.8(1)
Co(3) - Ru(1) - P(4)	109.1(1)	Co(3')-Ru(1')-P(4')	108.3(1)
Co(1)-Ru(1)-C(1)	151.8(3)	Co(1')-Ru(1')-C(1')	151.7(4)
Co(2)-Ru(1)-C(1)	105.0(3)	Co(2')-Ru(1')-C(1')	100.5(3)
Co(3)-Ru(1)-C(1)	98.1(3)	Co(3')-Ru(1')-C(1')	100.9(4)
Co(1)-Ru(1)-C(3)	107.8(3)	Co(1')-Ru(1')-C(3')	105.4(3)
Co(2)-Ru(1)-C(3)	98.7(3)	Co(2')-Ru(1')-C(3')	101.4(3)
Co(3)-Ru(1)-C(3)	154.4(3)	Co(3')-Ru(1')-C(3')	155.4(3)
Ru(1)-Co(1)-Co(2)	60.5(1)	Ru(1')-Co(1')-Co(2')	59.9(1)
Ru(1)-Co(1)-Co(3)	60.3(1)	Ru(1')-Co(1')-Co(3')	61.4(1)
Co(2)-Co(1)-Co(3)	60.1(1)	Co(2')-Co(1')-Co(3')	60.1(1)
Ru(1) - Co(1) - P(1)	148.8(1)	Ru(1')-Co(1')-P(1')	149.6(1)
Co(2)-Co(1)-P(1)	95.1(1)	Co(2')-Co(1')-P(1')	91.8(1)
Co(3)-Co(1)-P(1)	91.5(1)	Co(3')-Co(1')-P(1')	96.1(1)
Ru(1)-Co(1)-C(4)	116.1(3)	Ru(1')-Co(1')-C(4')	112.4(3)
Co(2)-Co(1)-C(4)	146.9(3)	Co(2')-Co(1')-C(4')	150.1(4)
Co(3) - Co(1) - C(4)	150.8(3)	Co(3')-Co(1')-C(4')	145.5(3)
Ru(1)-Co(1)-C(12)	76.5(3)	Ru(1')-Co(1')-C(12')	74.8(2)
Co(2)-Co(1)-C(12)	47.9(3)	Co(2')-Co(1')-C(12')	47.5(3)
Co(3)-Co(1)-C(12)	107.3(3)	Co(3')-Co(1')-C(12')	107.0(3)
Ru(1)-Co(1)-C(13)	75.4(2)	Ru(1')-Co(1')-C(13')	79.0(2)
Co(2)-Co(1)-C(13)	106.1(2)	Co(2')-Co(1')-C(13')	107.7(2)
Co(3) - Co(1) - C(13)	46.8(2)	Co(3')-Co(1')-C(13')	48.0(2)
Ru(1)-Co(2)-Co(1)	64.7(1)	Ru(1')-Co(2')-Co(1')	64.7(1)
Ru(1)-Co(2)-Co(3)	61.8(1)	Ru(1')-Co(2')-Co(3')	63.1(1)
Co(1)-Co(2)-Co(3)	60.2(1)	Co(1')-Co(2')-Co(3')	60.0(1)
Ru(1)-Co(2)-P(2)	157.7(1)	Ru(1') - Co(2') - P(2')	158.0(1)
Co(1)-Co(2)-P(2)	97.5(1)	Co(1')-Co(2')-P(2')	100.7(1)
Co(3)-Co(2)-P(2)	98.2(1)	Co(3') - Co(2') - P(2')	95.6(1)
Ru(1)-Co(2)-C(6)	96.8(4)	Ru(1')-Co(2')-C(6')	95.6(3)
$C_0(1) - C_0(2) - C(6)$	142.1(3)	Co(1') - Co(2') - C(6')	144.5(4)
Co(3) - Co(2) - C(6)	141.8(4)	Co(3') = Co(2') = C(6')	139.0(3)
Ru(1)-Co(2)-C(12)	81.2(3)	Ru(T) = Co(2') = C(12')	80.0(3)
Co(1) - Co(2) - C(12)	52.5(2)	Co(T) = Co(2') = C(12')	52.7(2)

Table 3 (continued)	
$\overline{Co(3)-Co(2)-C(12)}$	112.0(2)
$R_{1}(1) = C_{2}(2) = C(23)$	728(3)

Co(3) - Co(2) - C(12)	112.0(2)	Co(3')-Co(2')-C(12')	111.9(3)
Ru(1)-Co(2)-C(23)	72.8(3)	Ru(1')-Co(2')-C(23')	73.4(3)
Co(1)-Co(2)-C(23)	109.0(2)	Co(1')-Co(2')-C(23')	108.5(2)
Co(3) - Co(2) - C(23)	50.0(2)	Co(3')-Co(2')-C(23')	49.7(2)
Ru(1) - Co(3) - Co(1)	64.5(1)	Ru(1')-Co(3')-Co(1')	63.8(1)
Ru(1)-Co(3)-Co(2)	61.9(1)	Ru(1')-Co(3')-Co(2')	60.7(1)
Co(1)-Co(3)-Co(2)	59.7(1)	Co(1')-Co(3')-Co(2')	59.8(1)
Ru(1)-Co(3)-P(3)	156.2(1)	Ru(1')-Co(3')-P(3')	155.2(1)
Co(1) - Co(3) - P(3)	100.6(1)	Co(1')-Co(3')-P(3')	96.4(1)
Co(2) - Co(3) - P(3)	94.8(1)	Co(2')-Co(3')-P(3')	97.1(1)
Ru(1) - Co(3) - C(8)	98.2(3)	Ru(1')-Co(3')-C(8')	103.5(3)
Co(1) - Co(3) - C(8)	146.2(3)	Co(1')-Co(3')-C(8')	149.1(4)
Co(2) - Co(3) - C(8)	139.7(2)	Co(2')-Co(3')-C(8')	141.2(3)
Ru(1)-Co(3)-C(13)	80.8(2)	Ru(1')-Co(3')-C(13')	82.5(3)
Co(1)-Co(3)-C(13)	52.9(3)	Co(1')-Co(3')-C(13')	52.1(3)
Co(2)-Co(3)-C(13)	111.8(3)	Co(2')-Co(3')-C(13')	111.5(3)
Ru(1)-Co(3)-C(23)	72.4(3)	Ru(1')-Co(3')-C(23')	71.9(3)
Co(1)-Co(3)-C(23)	107.3(3)	Co(1')-Co(3')-C(23')	107.9(3)
Co(2)-Co(3)-C(23)	48.7(3)	Co(2')-Co(3')-C(23')	49.4(3)
Co(1) - P(1) - C(10)	109.7(2)	Co(1')-P(1')-C(10')	108.4(2)
Co(2) - P(2) - C(10)	104.9(3)	Co(2')-P(2')-C(10')	104.3(3)
Co(3)-P(3)-C(10)	105.1(2)	Co(3') - P(3') - C(10')	105.5(3)
Ru(1) - P(4) - C(40)	113.1(3)	Ru(1')-P(4')-C(40')	112.3(3)
Ru(1)-P(4)-C(41)	117.4(3)	Ru(1')-P(4')-C(41')	116.9(3)
C(40) - P(4) - C(41)	101.4(5)	C(40') - P(4') - C(41')	102.0(4)
P(1)-C(10)-P(2)	104.1(3)	P(1')-C(10')-P(2')	104.9(4)
P(1)-C(10)-P(3)	103.7(4)	P(1')-C(10')-P(3')	104.6(4)
P(2)-C(10)-P(3)	105.8(4)	P(2')-C(10')-P(3')	105.7(3)
Co(1)-C(12)-Co(2)	79.6(3)	Co(1')-C(12')-Co(2')	79.8(4)
Co(1)-C(13)-Co(3)	80.4(3)	Co(1')-C(13')-Co(3')	79.9(3)
Co(2) - C(23) - Co(3)	81.3(3)	Co(2')-C(23')-Co(3')	80.9(3)

pulsed. The bond angles Ru(1)-Ru(2)-P(3), Ru(1)-Ru(2)-C(6), Ru(2)-Ru(1)-C(3) and Ru(2)-Ru(1)-C(1)on the hydride-bridged Ru(1)-Ru(2) edge are 112.6(2), 97.7(7), 111.4(9) and 91.4(9)° (av. 103.3°) in molecule A and 112.4(2), 98.1(6), 111.3(8) and $90.5(8)^{\circ}$ (av. 103.1°) in molecule **B** respectively. On the Ru(2)-Ru(3)edge, which is also hydride-bridged, the bond angles Ru(3)-Ru(2)-P(1), Ru(3)-Ru(2)-C(6), Ru(2)-Ru(3)-P(4) and Ru(2)-Ru(3)-C(9) are 117.7(2), 92.3(6), 116.9(2) and 83.8(7)° (av. 102.7°) in molecule A and 118.5(2), 90.3(7), 114.6(2) and 85.6(7)° (av. 102.3°) in molecule B respectively. On the third hydride-bridged edge the angles Co(1)-Ru(2)-P(1), Co(1)-Ru(2)-P(3)and Ru(2)-Co(1)-C(5) are 114.3(2), 119.9(2) and $125.7(10)^{\circ}$ (av. 120.0°) in molecule A and 114.4(2), 120.5(2) and $125.3(8)^{\circ}$ (av. 120.1°) in molecule **B** respectively and therefore large enough for the edgebridging hydride ligand.

In $H_3Ru_3Co(CO)_{10}(dppe)$ all three hydride ligands were crystallographically located on the corresponding edges, as in molecule (2). In $H_3Ru_3Co(CO)_{10}(dppe)$ the two hydride-bridged Ru–Ru bonds and one hydridebridged Ru–Co bond are 3.015(1), 2.993(1) and 2.748(1) Å. The non-bridged Ru–Ru bond is 2.830(1) Å and the carbonyl-bridged Ru–Co bonds 2.669(1) and 2.670(1) Å. The Ru–Ru–C/P bond angles on the hydride-bridged edges average 103.7° on the first hydride-bridged Ru–Ru

Selected geometric $(PPh_2)_3](PMe_2Ph) \cdot C$	parameter CH ₂ Cl ₂ (2)	rs (Å,°)	for H_3Ru_3	Co(CO) ₉ [HC
$\overline{\text{Ru}(1)-\text{C}(1)}$	1.86(3)	Ru(1')-C	(1')	1.80(3)
Ru(1) - C(3)	1.93(3)	Ru(1')-C	(3')	1.92(3)
Ru(1)-C(2)	1.98(3)	Ru(l')-C	(2')	1.95(3)
Ru(1)-C(4)	2.34(3)	Ru(1')-C	(4')	2.33(3)
Ru(1)-Co(1)	2.684(4)	Ru(1')-C	Co(1')	2.683(4)
Ru(1)-Ru(3)	2.876(3)	Ru(1')-R	.u(3′)	2.871(3)
Ru(1)-Ru(2)	2.987(3)	Ru(l')-R	u(2')	2.989(2)
Ru(2) = C(6)	1.86(2)	Ru(2') = C	(6')	1.90(2)
Ku(2) - P(3) $P_{u}(2) - P(1)$	2.288(3)	$\operatorname{Ku}(2') - \operatorname{F}$	(3)	2.295(6)
Ru(2) - r(1) Ru(2) - Co(1)	2.296(0)	Ru(2) - P Pu(2') = 0	(1)	2.293(0)
Ru(2) = CO(1) Ru(2) = Ru(3)	2.700(4) 3.044(2)	$R_{u}(2') = C$	20(1)	2.704(3)
Ru(2) = Ru(3)	1.88(3)	Ru(2') = K	(9')	1.84(3)
Ru(3) - C(8)	1.89(3)	Ru(3') = C	(8')	1.85(2)
Ru(3) - C(13)	2.14(2)	Ru(3') - C	(13')	2.17(3)
Ru(3)-P(4)	2.334(7)	Ru(3')-P	(4')	2.335(7)
Ru(3)-Co(1)	2.674(3)	Ru(3') = C	Co(1')	2.672(3)
Co(1) - C(4)	1.71(3)	Co(1')-C	(4')	1.77(2)
Co(1) - C(5)	1.71(3)	Co(1')-C	2(5')	1.69(3)
Co(1) - C(13)	1.80(2)	Co(1')-C	2(13')	1.82(2)
P(1)-C(10)	1.85(2)	P(1')-C(1)	10')	1.91(2)
P(2) - C(10)	1.90(2)	P(2')-C(10')	1.84(2)
P(3) = C(10)	1.85(2)	P(3') - C(10')	1.86(2)
P(4) = C(41)	1.82(2)	P(4') = C(4')	41') 40')	1.82(2)
P(4) = C(40) $C(1) = D_{11}(1) = C_{21}(1)$	1.83(2)	P(4') = C(1')	40°) (1') $C_{2}(1')$	1.83(2)
C(1) = Ku(1) = CO(1)	134.7(9)	C(1) - Ku	(1) - Co(1)	138.2(9)
C(2) = Ru(1) = Co(1)	101 7(8)	$C(2') = R_1$	(1') = Co(1')	113.2(8) 102.9(7)
C(2) = Ru(1) = Co(1)	39 1(6)	C(2') = R(1)	(1') = Co(1')	40.6(6)
C(1) - Ru(1) - Ru(3)	79.7(9)	C(1')-Ru	(1') - Ru(3')	84.8(9)
C(3)-Ru(1)-Ru(3)	173.7(8)	C(3')-Ru	(1') - Ru(3')	171.8(8)
C(2) - Ru(1) - Ru(3)	92.4(8)	C(2')-Rt	(1') - Ru(3')	90.0(7)
C(4)-Ru(1)-Ru(3)	93.6(7)	C(4')-Ru	(1')-Ru(3')	94.4(6)
Co(1)-Ru(1)-Ru(3)	57.37(8)	Co(1')-R	u(1')-Ru(3')	57.39(8)
C(1) - Ru(1) - Ru(2)	91.4(9)	C(1')-Ru	(1')-Ru(2')	90.5(8)
C(3) = Ru(1) = Ru(2)	111.4(9)	C(3')-Ru	(1') - Ru(2')	111.3(8)
C(2) = Ru(1) = Ru(2)	153.3(8)	C(2')-Rt	(1') - Ru(2')	151.7(7)
C(4) - Ku(1) - Ku(2)	85.8(0)	C(4) = Ku	$(1') - \mathbf{Ku}(2')$	88.2(6)
CO(1) = Ru(1) = Ru(2) Ru(3) = Ru(1) = Ru(2)	50.10(0) 62.53(6)	CO(1) - R $P_{11}(3') = P$	u(1) - Ku(2)	58.03(8)
P(3) = Ru(2) = P(1)	72 A(2)	$P(1') P_{11}$	(2') P(3')	702.32(0)
C(6) = Ru(2) = Co(1)	144 4(6)	$\Gamma(6') = Ru$	$(2') = \Gamma(3')$	143 1(7)
P(3)-Ru(2)-Co(1)	119.9(2)	P(3') - Ru	(2') - Co(1')	120.5(2)
P(1)-Ru(2)-Co(1)	114.3(2)	P(1')-Ru	(2') - Co(1')	114.4(2)
C(6) - Ru(2) - Ru(1)	97.7(7)	C(6')-Ru	(2')-Ru(1')	98.1(6)
P(3)-Ru(2)-Ru(1)	112.6(2)	P(3')-Ru	(2')-Ru(1')	112.4(2)
P(1)-Ru(2)-Ru(1)	169.8(2)	P(1')-Ru	$(2')_{-}Ru(1')$	169.8(2)
Co(1)-Ru(2)-Ru(1)	55.45(8)	Co(1')-R	u(2') - Ru(1')	55.44(8)
C(6) - Ru(2) - Ru(3)	92.3(6)	C(6')-Ru	(2')-Ru(3')	90.3(7)
P(3) = Ru(2) = Ru(3)	169.4(2)	P(3')-Ru	(2') - Ru(3')	169.3(2)
P(1) = Ru(2) = Ru(3)	117.7(2)	P(f) = Ru((2') = Ru(3')	118.5(2)
Co(1) - Ru(2) - Ru(3) Pu(1) Pu(2) Pu(2)	54.54(7)	$CO(\Gamma) - R$	u(2') - Ru(3')	54.54(7)
Ru(1) - Ru(2) - Ru(3)	30.94(0)	$\mathbf{K}\mathbf{U}(\mathbf{I}) - \mathbf{K}$	u(Z') - Ku(3')	30.83(6)
C(8) = Ru(3) = Co(1)	141.2(7)	C(9) - Ku C(8') = Ru	(3') = Co(1')	142.7(7)
C(13) = Ru(3) = Co(1)	42 2(6)	C(0) = Ku C(13') = R	(3') = Co(1')	42 6(6)
P(4)-Ru(3)-Co(1)	103.9(2)	$P(4') = R_{10}$	(3') = Co(1')	1030(2)
C(9) - Ru(3) - Ru(1)	104.3(8)	C(9')-Ru	$(3') - \mathbf{Ru}(1')$	102.1(9)
C(8) - Ru(3) - Ru(1)	92.8(9)	C(8')-Ru	(3') - Ru(1')	93.0(8)
C(13)-Ru(3)-Ru(1)	76.8(6)	C(13')-R	u(3')-Ru(1')	77.2(6)
P(4)-Ru(3)-Ru(1)	160.6(2)	P(4')-Ru	(3')-Ru $(1')$	160.3(2)
Co(1)-Ru(3)-Ru(1)	57.70(8)	Co(1')-R	u(3')-Ru(1')	57.77(8)
C(9) - Ru(3) - Ru(2)	83.8(7)	C(9')-Ru	(3')-Ru(2')	85.6(7)
C(8) = Ru(3) = Ru(2)	150.0(9)	C(8')-Ru	(3') = Ru(2')	151.8(8)

Table 4

	Table	4	(continued)
--	-------	---	------------	---

_		
99.6(6)	C(13')-Ru(3')-Ru(2')	100.0(6)
116.9(2)	P(4')-Ru(3')-Ru(2')	114.6(2)
57.42(8)	Co(1')-Ru(3')-Ru(2')	57.42(8)
60.53(6)	Ru(1')-Ru(3')-Ru(2')	60.63(6)
119.4(9)	C(4')-Co(1')-Ru(3')	117.6(7)
131.5(10)	C(5')-Co(1')-Ru(3')	132.5(8)
52.8(8)	C(13')-Co(1')-Ru(3')	53.7(8)
59.4(9)	C(4')-Co(1')-Ru(1')	58.8(8)
160.7(10)	C(5')-Co(1')-Ru(1')	160.1(9)
87.5(8)	C(13')-Co(1')-Ru(1')	88.1(8)
64.92(9)	$\operatorname{Ru}(3') - \operatorname{Co}(1') - \operatorname{Ru}(1')$	64.84(8)
107.2(9)	C(4')-Co(1')-Ru(2')	108.7(9)
125.7(10)	C(5')-Co(1')-Ru(2')	125.3(8)
120.8(8)	C(13')-Co(1')-Ru(2')	121.8(8)
68.04(9)	Ru(3')-Co(1')-Ru(2')	68.04(9)
66.46(9)	$\operatorname{Ru}(1')$ - $\operatorname{Co}(1')$ - $\operatorname{Ru}(2')$	66.53(9)
95.5(6)	C(10') - P(1') - Ru(2')	96.1(6)
95.9(6)	C(10')-P(3')-Ru(2')	97.5(6)
81.5(11)	Co(1')-C(4')-Ru(1')	80.6(10)
94.1(8)	P(3')-C(10')-P(1')	91.5(8)
111.8(10)	P(2')-C(10')-P(3')	112.0(11)
114.4(10)	P(2')-C(10')-P(1')	114.7(10)
85.0(10)	Co(1')-C(13')-Ru(3')	83.6(10)
	$\begin{array}{c} 99.6(6)\\ 116.9(2)\\ 57.42(8)\\ 60.53(6)\\ 119.4(9)\\ 131.5(10)\\ 52.8(8)\\ 59.4(9)\\ 160.7(10)\\ 87.5(8)\\ 64.92(9)\\ 107.2(9)\\ 125.7(10)\\ 120.8(8)\\ 68.04(9)\\ 66.46(9)\\ 95.5(6)\\ 95.9(6)\\ 81.5(11)\\ 94.1(8)\\ 111.8(10)\\ 114.4(10)\\ 85.0(10)\\ \end{array}$	$\begin{array}{llllllllllllllllllllllllllllllllllll$

edge and 101.0° on the second. The two Co-Ru-P bond angles and the Ru-Co-C bond angle are 104.7(1), 114.2(1) and $120.1(2)^{\circ}$ (av. 113.0°) respectively.

In solution the ¹H NMR spectrum of **2** at 273 K shows a broadened multiplet at -16.2 ppm (intensity 1), which arises from the Ru–Co edge-bridging hydride ligand and a doublet of doublets signal at -19.50 ppm (intensity 2) assigned to the remaining two hydride ligands.

In the original cluster the signal was observed as a singlet at -15.8 ppm and in the parent cluster $H_3Ru_3Co(CO)_{12}$ (C₁ isomer) at -17.2 ppm (0°C), indicating a fluxional process of the hydride ligands in these molecules. In the ¹H NMR spectrum of $H_3Ru_3Co(CO)_{10}$ (dppe) the hydrides showed two resonances, a sharp singlet at -16.6 ppm (Ru–H–Ru) and a broad singlet at -14.2 ppm (Ru–H–Co).

3. Experimental details

3.1. General

 $H_3Ru_3Co(CO)_9[HC(PPh_2)_3]$ and $HRuCo_3(CO)_9[HC(PPh_2)_3]$ were prepared by previously published methods [6]. PMe_2Ph , PMe_3 and all the solvents were of commercial origin. All manipulations except the chromatographic separations were done with deoxygenated solvents under N₂ atmosphere. The FT–IR spectra were recorded on a Galaxy 6020 spectrometer. The ¹H NMR spectra were recorded on a Bruker AM-250 spectrometer at 273 K in CDCl₃. Chemical shifts are relative to Me_4Si . Crystals were grown by evaporation of the solvent from a saturated hexane–CH₂Cl₂ solution. The

 Table 5

 Crystallographic data for compounds 1 and 2

	1	2
Formula	$\mathrm{C}_{53}\mathrm{H}_{43}\mathrm{O}_{8}\mathrm{P}_{4}\mathrm{Co}_{3}\mathrm{Ru}$	$C_{54}H_{45}O_9P_4CoRu_3$ + CH CL
FW	1209.7	1408.9
Colour; habit	Brown: rectangle	Brown: rectangle
Crystal size (mm ³)	$0.5 \times 0.5 \times 0.3$	$0.6 \times 0.5 \times 0.5$
Crystal system	Monoclinic	Monoclinic
Space group	P2(1)/n	$P_2(1)/c$
a (Å)	20.053(3)	19.789(4)
b (Å)	22.448(4)	23.368(5)
c (Å)	24.399(4)	26.334(6)
β (°)	111.10(1)	90.42(2)
$V(Å^3)$	10247(3)	12177(5)
Ζ	8	8
Calc. density (g cm ⁻³)	1.568	1.534
μ (mm ⁻¹)	1.411	1.240
F(000)	4880	5592
No. of centering reflections	28	28
Centering 2θ (°)	19-32	15-22
Scan range 2θ (°)	5-50	5-42
Scan speed (° min^{-1})	2.49-29.3	3.00-29.3
h, k, l range	$23,26,\pm 29$	23,28,±31
Reflections collected	19304	13530
No. of independent reflections	18244	12880
Obs. data	10509	6314
$[I \ge 2\sigma(I)]$		
No. of parameters	1075	1158
$R\left[I \ge 2\sigma(I)\right]$	5.48	9.08
R'	5.59	—
$wR^2 \left[I \ge 2\sigma(I) \right]$		18.18
g (weight)	0.0005	0.0839
Goodness of fit	1.29	1.02
peak (e Å ⁻³)	0.80	1.33
Largest difference hole (e $Å^{-3}$)	- 0.68	- 0.82

 $\frac{R = (\Sigma || F_o| - |F_c|) / \Sigma |F_o|, R' = [\Sigma w(|F_o| - |F_c|)^2 / \Sigma w |F_o|^2]^{1/2}}{w \text{ here } w = 1 / [\sigma^2(F) + gF^2]. wR^2 = {\Sigma [w(F_o^2 - F_c^2)^2] / \Sigma [w(F_o^2)^2]}^{1/2}, \text{ weighting scheme used } w = 1 / [\sigma^2(F_o^2) + (gP)^2 + 45.8P], \text{ where } P = (F_o^2 + 2F_2^2) / 3. \text{ Goodness of fit} [\Sigma w(|F_o| - |F_c|)^2 / (N_o - N_v)]^{1/2}, \text{ where } N_o \text{ is the number of observed reflections and } N_v \text{ the number of variables.}$

crystal of 1 was measured at room temperature exposed to normal atmosphere, and the crystal of 2 in a sealed glass capillary.

3.2. Synthesis

3.2.1. $HRuCo_3(CO)_8[HC(PPh_2)_1]$ (PMe₂Ph)

A tetrahydrofuran solution (30 ml) of HRuCo₃(CO)₉-[HC(PPh₂)₃] (29 mg, 0.026 mmol) and an excess of PMe₂Ph (30 μ l, 0.211 mmol) were reacted at refluxing temperature. After 3.5 h the reaction was complete. After evaporation of the solvent the residue was purified by column chromatography on silica. Elution with an n-hexane/CH₂Cl₂ (1:2) mixture gave a fraction which was identified as compound **1** (red, 24.7 mg, 0.020 mmol, 76.9%). IR (cm⁻¹): 2011 vs, 1962 vs, 1783 m, 1753 m, CH₂Cl₂. ¹H NMR (ppm): $-19.9 \text{ dd } [^2J(P_{ax} - H) = 36.6 \text{ Hz}, ^2J(P_{ap} - H) = 7.3 \text{ Hz and } ^3J(P_{ax} - H) = 3.3 \text{ Hz}].$

3.2.2. $H_3 Ru_3 Co(CO)_9 [HC(PPh_2)_3] (PMe_2Ph) \cdot CH_2Cl_2$ A tetrahydrofuran solution (30 ml) of $H_3 Ru_3 Co-(CO)_9 [HC(PPh_2)_3]$ (27.4 mg, 0.023 mmol) and an excess of PMe_2Ph (10 μ l, 0.070 mmol) were reacted at room temperature for 3 h. The THF was evaporated and the resulting mixture of cluster compounds was separated by column chromatography on silica. Elution with an n-hexane/CH₂Cl₂ (1:2) mixture gave compound **2** as a third fraction (red, 13.0 mg, 0.010 mmol, 43.5%). IR (cm⁻¹): 2054 vs, 2005 vs, 1993 vs, 1976 m,br, 1827 w, 1778 w, CH₂Cl₂. ¹H NMR (ppm): -16.2 m, -19.50 dd [J(P-H) = 23.8 Hz, J(P-H) = 12.3 Hz].

3.2.3. $HRuCo_3(CO)_8[HC(PPh_2)_3](PMe_3)$

A tetrahydrofuran solution (30 ml) of HRuCo₃(CO)₉-[HC(PPh₂)₃] (44 mg, 0.040 mmol) and an excess of PMe₃ (25 μ l, 0.241 mmol) were reacted at +45 °C for 14 h. After evaporation of the solvent the residue was purified by column chromatography on silica. Elution with an n-hexane/CH₂Cl₂ (1:2) mixture gave a fraction which was identified as HRuCo₃(CO)₈[HC(PPh₂)₃] (PMe₃) with IR and ¹H NMR spectroscopy (reddishbrown, 45.5 mg, 0.039 mmol, 97.5%). IR (cm⁻¹): 2012 vs, 1969 vs, 1753 m,br, CH₂Cl₂. ¹H NMR (ppm): -19.9 dd [²J(P_{ax}-H) = 36.0 Hz, ²J(P_{ap}-H) = 7.0 Hz and ³J(P_{ax}-H) = 3.0 Hz].

3.3. Structure determination

Diffraction data were recorded on a Nicolet R3m diffractometer with graphite-monochromated Mo -K α radiation ($\lambda = 0.71073$ Å) and ω scan mode. Intensities were corrected for Lorentz, polarization and background effects. An absorption correction was applied for **1**.

In both structures metal atom positions were located by applying direct methods, and the coordinates for non-metal atoms were determined from subsequent difference electron density calculations. All calculations were performed using the SHELXTL PLUS [15] program package, except for the final structure refinement of **2** where the SHELXTL93 [16] program was used. For **2**, 23033 reflections were collected with scan range $5^{\circ} \le 2\theta \le 50^{\circ}$, but within the range $42-50^{\circ}$ the crystal showed no diffraction.

All non-hydrogen atoms were refined anisotropically, but the phenyl rings as rigid groups. The solvent molecules in 2 were refined isotropically. Hydrogen atoms were placed in calculated positions and not refined. The hydride ligand in **1** was located on the difference electron density map but could not be re-fined.

4. Supplementary material available

For both structures a complete list of bond lengths and angles and tables of hydrogen coordinates, thermal parameters and structure factors have been deposited at the Cambridge Crystallographic Data Centre.

References

- T.A. Pakkanen, J. Pursiainen, T. Venäläinen and T.T. Pakkanen, J. Organomet. Chem., 372 (1989) 129.
- [2] P. Braunstein, J. Rose, D. Toussaint, S. Jääskeläinen, M. Ahlgrèn, T.A. Pakkanen, J. Pursiainen, L. Toupet and D. Grandjean, Organometallics, 13 (1994) 2472.
- [3] H.J. Kakkonen, M. Ahlgrèn, T.A. Pakkanen and J. Pursiainen, Acta Crystallogr., C50 (1994) 528.

- [4] A.A. Low and J.W. Lauher, Inorg. Chem., 26 (1987) 3863.
- [5] S. Rossi, J. Pursianinen and T.A. Pakkanen, J. Organomet. Chem., 436 (1992) 55.
- [6] H.J. Kakkonen, M. Ahlgrèn, J. Pursiainen and T.A. Pakkanen, J. Organomet. Chem., 507 (1996) 147.
- [7] A.A. Arduini, A.A. Bahsoun, J.A. Osborn and C. Voelker, Angew. Chem., Int. Ed. Engl., 19 (1980) 1024.
- [8] A.A. Bahsoun, J.A. Osborn, C. Voelker, J.J. Bonnet and G. Lavigne, Organometallics, 1 (1982) 1114.
- [9] D.J. Darensbourg, D.J. Zalewski and T. Delord, Organometallics, 3 (1984) 1210.
- [10] A.A. Bahsoun, J.A. Osborn, J.-P. Kitzinger, P.H. Bird and U. Siriwardane, Nouv. J. Chim., 8 (1984) 125.
- [11] D.J. Darensbourg and D.J. Zalewski, Organometallics, 4 (1985) 92.
- [12] D.J. Darensbourg, D.J. Zalewski, A.L. Rheingold and R.L. Durney, *Inorg. Chem.*, 25 (1986) 3281.
- [13] J. Pursiainen and T.A. Pakkanen, J. Organomet. Chem., 309 (1986) 187.
- [14] W.L. Gladfelter, G.L. Geoffroy and J.C. Calabrese, Inorg. Chem., 19 (1980) 2569.
- [15] G.M. Sheldrick, SHELXTL-PLUS, Vers. 4.21/V Siemens Analytical X-Ray Instruments Inc., Madison, WI, 1990.
- [16] G.M. Sheldrick, SHELXTL93, Program for the Refinement of Crystal Structures, University of Göttingen, Germany, 1993.